toad.shifts.methods.base¶
Classes
- class toad.shifts.methods.base.ShiftsMethod¶
Bases:
ABC- abstractmethod fit_predict(values_1d, times_1d)¶
Apply the shifts detection method.
- Parameters:
values_1d (ndarray) – Input values.
times_1d (ndarray) – Input times.
- Returns:
- A detection time series with the same length as the input,
where each value indicates the presence or magnitude of a detected shift.
- Return type:
np.ndarray
- pre_validation(data_array, td)¶
Optional validation method that runs once before applying the method to all grid cells.
This method is called once in compute_shifts() before xr.apply_ufunc() processes all grid cells. Override this method in subclasses to implement method-specific validations (e.g., checking for regular temporal spacing, validating parameters, converting timescale parameters, etc.).
- Parameters:
data_array (xr.DataArray) – The masked data array that will be processed
td (TOAD) – The TOAD object containing the dataset and metadata
- Raises:
ValueError – If validation fails
- Return type:
None